
NYMMS Documentation
Release 0.2.6

Michael Barrett

August 23, 2015

Contents

1 Demo 3

2 Scaling 5
2.1 Architecture Diagram . 5
2.2 The Daemons . 6
2.3 Communication . 6
2.4 Other Details . 6

3 Contents 7
3.1 Configuration . 7
3.2 Demo AMI . 10
3.3 Getting Started with NYMMS . 12

4 Indices and tables 17

i

ii

NYMMS Documentation, Release 0.2.6

NYMMS is a monitoring system written in python that takes influences from many of the existing monitoring systems.
It aims to be easy to scale and extend.

Contents 1

NYMMS Documentation, Release 0.2.6

2 Contents

CHAPTER 1

Demo

Before we get into the guts of NYMMS I’d like to mention that we build a demonstration Amazon AMI that comes
up with a basic configuration for an all-in-one NYMMS host that runs all of the daemons. To get more information on
how to use that, please visit Demo AMI

3

NYMMS Documentation, Release 0.2.6

4 Chapter 1. Demo

CHAPTER 2

Scaling

NYMMS intends to scale as easily as possible. It does so by separating out the work often handled in a monitoring
system into multiple processes, and then handling communication between those processes with queues. None of this
is revolutionary (Shinken broke the Nagios daemon up into many small pieces, and Sensu made heavy use of queues,
and all of them are excellent monitoring systems that we take heavy influence from)- but I’m hoping to bring the two
together in useful ways.

2.1 Architecture Diagram

5

http://www.shinken-monitoring.org/
http://www.nagios.org/
http://sensuapp.org/

NYMMS Documentation, Release 0.2.6

2.2 The Daemons

nymms-scheduler: The daemon responsible for reading in the configuration, figuring out what it is you want to
monitor and how you want to monitor those things, and then submitting tasks to the queue for probes.

nymms-probe: The daemon(s) responsible for reading from the task queue and taking those monitoring tasks and
executing them. It sends along the results of those monitors to the results topic.

nymms-reactor: The daemon(s) that takes all the results, applies filters to them and then passes off the results that
pass the filters onto their various handlers. Handler’s can do just about anything with the results, from emailing
people to triggering an incident in PagerDuty, to submitting stats to a stats system. Finally the reactor updates
the state database with the result.

2.3 Communication

I’ve tried to keep the interface with the various communication channels simple and easily extendible. As of this
writing the entire system is very AWS based. We make use of the following AWS services:

SQS: We use SQS as our general queue service. The scheduler passes tasks to the probes via SQS directly. The
reactors read the results from the probes off SQS queues (note that the probes don’t send results directly through
SQS, which leads us to...)

SNS: Probes submit results into SNS topics, which then pass them onto the reactors’ SQS queues. This allows a
single result to be shared amongst multiple types of reactors, as well as allowing results to be sent to various
other endpoints.

SDB: We use AWS SimpleDB to store state. This state database is written to by reactors when they receive results.
It’s read from by probes (to make sure we aren’t beating a dead horse when something is down and has been
down for some time) and by the reactors (to allow for logic regarding reacting to results that have changed state,
or have been in a state for some length of time).

SES: We use AWS Simple Email Service in some reactor handlers in order to be able to easily send email.

Each of these services is used fairly lightly in most cases, so the charges should be minimal in almost all cases. The
upside is that we currently do not require physical servers for any of these functions, which inevitably cost a significant
amount to build and maintain.

In the future it should be fairly easy to convert these services to other systems (such as RabbitMQ, MongoDB, etc).

2.4 Other Details

Right now all monitors are active monitors - they are fired from the probes and contact other services via various
protocols to determine if the service is in an okay state. Because of the design using the various queues however, it
should be simple in the future to submit passive results. The reactors are very permissive in accepting data from just
about any source just as long as it comes from their queue and it fits the correct dataformat.

As well we use a plugin format identical to the Nagios format. The benefit of this is that there is a vast wealth of
nagios plugins out there, and they can be used as is with NYMMS. In the future we may come up with other plugin
formats, but we haven’t had a reason to so far.

6 Chapter 2. Scaling

http://www.pagerduty.com/
http://aws.amazon.com/
http://aws.amazon.com/
http://aws.amazon.com/
http://aws.amazon.com/
http://www.rabbitmq.com/
http://www.mongodb.org/
http://www.nagios.org/

CHAPTER 3

Contents

3.1 Configuration

The default configuration language for NYMMS is written in YAML. For the most part it follows the YAML standard.
It has one main addition, the !include macro.

!include can be used to include another file in a given file. This is useful when you have a main config file (say
nodes.yaml) but want to allow external programs to provide more config (say in /etc/nymms/nodes/*.yaml).

In that specific example you’d put the following in the yaml file where you want the files included:

!include /etc/nymms/nodes/*.yaml

3.1.1 config.yaml

The config.yaml file is the main configuration for all of the daemons and scripts in NYMMS.

You can see an example by expanding the code block below.

monitor_timeout This represents the default amount of time, in seconds, each monitor is given before it times out.
Type: Integer. Default: 30

resources This points to the filesystem location of the resources config (see resources.yaml). Type: String, file loca-
tion. Default: /etc/nymms/resources.yaml

region The AWS region used by the various daemons. Type: String, AWS Region. Default: us-east-1

state_domain The SDB domain used for storing state. Type: String. Default: nymms_state

tasks_queue The name of the SQS queue used for distributing tasks. Type: String. Default: nymms_tasks

results_topic The name of the SNS topic where results are sent. Type: String. Default: nymms_results

private_context_file The location of the private context file (see private.yaml). Type: String, file location. Default:
/etc/nymms/private.yaml

task_expiration If a task is found by a probe, and it is older than this time in seconds, then the probe will throw it
away. Type: Integer. Default: 600

probe This is a dictionary where probe specific configuration goes. Type: Dictionary.

max_retries The maximum amount of times the probe will retry a monitor that is in a non-OK state. Type:
Integer. Default: 2

7

http://www.yaml.org/
http://www.yaml.org/

NYMMS Documentation, Release 0.2.6

queue_wait_time The amount of time the probe will wait for a task to appear in the tasks_queue. AWS SQS
only allows this to be a maximum of 20 seconds. In most cases, the default should be fine. Type: Integer.
Default: 20

retry_delay The amount of time in seconds that a probe will delay retries on non-OK, non-HARD monitors.
This allows you to quickly retry monitors that are supposed to be failing, to verify that there is an actual
issue. Type: Integer. Default: 30

reactor This is a dictionary where reactor specific configuration goes. Type: Dictionary

handler_config_path The directory where Reactor Handlers specific configurations are found. Type: String.
Default: /etc/nymms/handlers

queue_name The name of the SQS queue where reactions will be found. Type: String. Default: reactor_queue

queue_wait_time The amount of time the probe will wait for a result to appear in the queue named in reac-
tor.queue_name. AWS SQS only allows this to be a maximum of 20 seconds. In most cases, the default
should be fine. Type: Integer. Default: 20

visibility_timeout The amount of time (in seconds) that a message will disappear from the SQS reactor queue
(defined in reactor.queue_name above) when it is picked up by a reactor. If the reactor doesn’t finish it’s
work and delete the message within this amount of time, the message will re-appear in the queue. This
allows the reactions to survive reactor crashes and the like. Type: Integer. Default: 30

scheduler This is a dictionary where reactor specific configuration goes. Type: Dictionary

interval How often, in seconds, the scheduler will schedule tasks. Type: Integer. Default: 300

backend The dot-separated class path to use for the backend. The backend is what is used to find nodes that
need to be monitored. Type: String. Default: nymms.scheduler.backends.yaml_backend.YamlBackend

backend_args Any configuration args that the scheduler.backend above needs. Type: Dictionary

path This is used by the YamlBackend, which is the default. This gives the name of the yaml file with
node definitions that the YamlBackend uses. Type: String. Default: /etc/nymms/nodes.yaml

lock_backend The backend used for locking multiple schedulers. Currently only SDB is available. Type:
String. Default: SDB

lock_args Any configuration args that the scheduler.lock_backend needs. Type: Dictionary.

duration How long, in seconds, the scheduler will keep the lock for. Type: Integer. Default: 360

domain_name The SDB domain name where locks are stored. Type: String. Default: nymms_locks

lock_name The name of the lock. Type: String. Default: scheduler_lock

suppress These are the config settings used by the suppression system. Type: Dictionary.

domain The SDB domain where suppressions will be stored. Type: String. Default:
nymms_suppress

cache_timeout The amount of time, in seconds, to keep suppressions cached. Type: Integer. De-
fault: 60

3.1.2 resources.yaml

The resources.yaml file is where you define your commands, monitors and monitoring groups.

commands Commands are where you define the commands that will be used for monitoring services. The main
config for each command is the command_string, which is a templatized string that defines the command line
to a command line executable.

8 Chapter 3. Contents

NYMMS Documentation, Release 0.2.6

monitors Monitors are specific instances of commands, allowing you to fill in templated variables in the command
used. This allows your commands to be fairly generic and easily re-usable.

monitoring groups Monitoring groups are used to tie monitors to individual nodes. It also lets you add some moni-
toring group specific variables that can be used in commands templates and other places.

Config Options

commands A dictionary of commands, the key of each is a unique name for the command, and the value is another
dictionary with the commands configuration. Other than the command_string config option, you can specify
any others you like - they will be accessible in the template of the command_string itself. Type: Dictionary.

command_string A command line string using Jinja’s variable syntax. (ie: {{variable}}). Type: String.

other configs You can specify as many other key/value entries as you like. They will be useable as variables
in the command_string itself. Often times the values set here will be used as defaults for the command,
provided the variable isn’t set anywhere else (such as on the monitor, or the node).

monitors A dictionary of monitors, each of which calls a command defined above. The key of each entry is the
name of the monitor, the value is another dictionary which contains configuration values for that monitor. Type:
Dictionary

command The name of a command defined in the resources file. This is the command that will be called for
this monitor. Type: String.

monitoring_groups A list of monitoring groups that this monitor is a part of. This is how you tie monitors to
nodes - every monitor that is attached to a monitoring_group will be ran against every node that is attached
to that monitoring_group.

other configs You can specify as many other key/value entries as you like for each monitor. They will be
useable as variables in the template strings used in the command for this monitor.

monitoring_groups A dictionary of monitoring groups which tie together monitors and nodes. The keys of the
dictionary are the monitoring_groups names, while the values are any extra config you want to put into the
command context. Often times the values will be blank (see the example).

3.1.3 private.yaml

The private.yaml file is used to give context variables that can be used in various monitors, but which are not included
when the tasks and results are sent over the wire. Largely these are used for things like passwords that are needed by
monitors.

The variables that are provided by private.yaml need to be prepended by __private. when referring to them in tem-
plates. For example, if you have a private variable called db_password you would refer to it as __private.db_password
in templates.

The contents of the private.yaml are simple key/value pairs.

3.1.4 nodes.yaml

The nodes.yaml file is the file used by default by the YamlBackend, which is used by the scheduler to figure out what
nodes (instances, hosts, etc) need to be monitored. It’s a dictionary of node entries - each entry’s key is the name of
the node. The value of each entry is a dictionary with the following options:

address The network address of the node. This can be an ip address, or a hostname. If no address is provided, then it
is assumed that the name of the node entry is the address. Type: String. Default: The node entry name.

3.1. Configuration 9

NYMMS Documentation, Release 0.2.6

monitoring_groups A list of monitoring groups (as defined in resources.yaml) that this node is part of. Every monitor
that is attached to a monitoring group will be applied to every node in the monitoring group. Type: List.

realm The realm this node is a part of. See the realms documentation.

3.1.5 Reactor Handlers

3.2 Demo AMI

In order to give people something easy to start playing with (and to alleviate my shame in not having amazing doc-
umentation yet) I’ve gone ahead and started creating Demo AMIs in Amazon AWS. These AMIs come up with a
complete, all-in-one (ie: all daemons) instance that has a very basic configuration that can be used to play with
NYMMS and get used to the system.

Currently the AMIs are only being built in us-west-2 (ie: oregon) but if you have interest in running the AMI elsewhere
contact me and I’ll see about spinning one up for you.

You can find the AMIs by searching in the EC2 console in us-west-2 for nymms. The AMIs are named with a
timestamp like so:

nymms-ubuntu-precise-20131014-215959

Once you launch the AMI (I suggest using an m1.medium, though it MAY be possible to use an m1.small) you’ll need
to provide it with the correct access to the various AWS services (SQS, SNS, SES, SDB) that NYMMS makes use of.

This can be done one of two ways:

• You can create an instance role with the appropriate permissions (given below) and assign the instance to it.

• You can create an IAM user and assign the appropriate permissions then take their API credentials and put them
in /etc/default/nymms-common

The first way is the more secure, but the second is the easiest. Here’s an example permission policy that should work:

{
"Version": "2012-10-17",
"Statement": [
{

"Action": [
"ses:GetSendQuota",
"ses:SendEmail"

],
"Sid": "NymmsSESAccess",
"Resource": [

"*"
],
"Effect": "Allow"

},
{

"Action": [
"sns:ConfirmSubscription",
"sns:CreateTopic",
"sns:DeleteTopic",
"sns:GetTopicAttributes",
"sns:ListSubscriptions",
"sns:ListSubscriptionsByTopic",
"sns:ListTopics",
"sns:Publish",
"sns:SetTopicAttributes",

10 Chapter 3. Contents

NYMMS Documentation, Release 0.2.6

"sns:Subscribe",
"sns:Unsubscribe"

],
"Sid": "NymmsSNSAccess",
"Resource": [

"*"
],
"Effect": "Allow"

},
{

"Action": [
"sqs:ChangeMessageVisibility",
"sqs:CreateQueue",
"sqs:DeleteMessage",
"sqs:DeleteQueue",
"sqs:GetQueueAttributes",
"sqs:GetQueueUrl",
"sqs:ListQueues",
"sqs:ReceiveMessage",
"sqs:SendMessage",
"sqs:SetQueueAttributes"

],
"Sid": "NymmsSQSAccess",
"Resource": [

"*",
],
"Effect": "Allow"

},
{

"Action": [
"sdb:*"

],
"Sid": "NymmsSDBAccess",
"Resource": [

"*"
],
"Effect": "Allow"

}
]

}

Once you’ve done all that you need to restart each of the three nymms daemons via upstart so that they can read their
new credentials:

restart nymms-reactor
restart nymms-probe
restart nymms-scheduler

If all went well (you can tell by checking out the individual daemon logs in /var/log/upstart/) you should start to see
the results of the very basic monitors in /var/log/nymms/reactor.log.

You can find all of the configuration in /etc/nymms.

Let me know if you have any questions or run into any issues bringing up the AMI/services.

3.2. Demo AMI 11

NYMMS Documentation, Release 0.2.6

3.3 Getting Started with NYMMS

This tutorial will walk you through installing and configuring NYMMS. If you’d quickly like to start a NYMMS
system to play with yourself, please see the Demo AMI documentation.

This tutorial assumes basic understanding of Amazon Web Services. You will either need to understand how to launch
an instance with an instance profile with the appropriate permissions (see below) or you will need the Access Key
ID and Secret Access Key for a user with the appropriate permissions.

3.3.1 Installing NYMMS

On Ubuntu

I maintain a set of packages for installing NYMMS on your Ubuntu Precise system. In order to install these you first
need to add my PPA & key to your sources. You can find the directions to do so here.

Once you’ve done that, you can use apt to download the packages:

apt-get install python-nymms
apt-get install nymms-common
apt-get install nymms-reactor nymms-probe nymms-scheduler

The first package is the python code that makes up NYMMS. The second package is some common configuration used
by Ubuntu for running the NYMMS daemons. The last three packages are mainly startup scripts for starting NYMMS
via Ubuntu’s Upstart system.

Once those packages are installed you only need to provide NYMMS with the correct AWS permissions in order to
access the various services it makes use of. See Permissions below.

Note: If you decide to provide the AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment
variables for a user, you can store them in /etc/default/nymms-common. Be sure to restart each of the daemons after
doing so.

These packages will include a basic config as well as a few example nodes, monitors and handlers to give an example
of how the system runs. You can control the stopping/starting of all the daemons with various upstart commands -
there is one upstart script per daemon. For example to restart all three daemons you would call:

restart nymms-reactor
restart nymms-probe
restart nymms-scheduler

Using PIP

Since NYMMS is written in python I’ve also published it to PyPI. You can install it with pip by running:

pip install nymms

Warning: The python library does not come with startup scripts, though it does install the three daemon scripts
in system directories. You should work on your own startup scripts for the OS you are using.

Installing From Source

You can also install from the latest source repo:

12 Chapter 3. Contents

https://aws.amazon.com/
http://docs.aws.amazon.com/IAM/latest/UserGuide/instance-profiles.html
https://launchpad.net/~loki77/+archive/nymms
http://upstart.ubuntu.com/cookbook/
https://pypi.python.org/pypi

NYMMS Documentation, Release 0.2.6

git clone https://github.com/cloudtools/nymms.git
cd nymms
python setup.py install

Warning: The python library does not come with startup scripts, though it does install the three daemon scripts
in system directories. You should work on your own startup scripts for the OS you are using.

Using Virtual Environments

Another common way to install NYMMS is to use a virtualenv which provides isolated environments. This is also useful
if you want to play with NYMMS but do not want to (or do not have the permissions to) install it as root. First install
the virtualenv Python package:

pip install virtualenv

Next you’ll need to create a virtual environment to work in with the newly installed virtualenv command and
specifying a directory where you want the virtualenv to be created:

mkdir ~/.virtualenvs
virtualenv ~/.virtualenvs/nymms

Now you need to activate the virtual environment:

source ~/.virtualenvs/nymms/bin/activate

Now you can use either the instructions in Using PIP or Installing From Source above.

When you are finished using NYMMS you can deactivate your virtual environment with:

deactivate

Note: The deactivate command just unloads the virtualenv from that session. The virtualenv still exists in the location
you created it and can be re-activated by running the activate command once more.

3.3.2 Permissions

NYMMS makes use of many of the Amazon Web Services. In order for the daemons to use these services they have
to be given access to them. Since NYMMS is written in python, we make heavy use of the boto library. Because of
that we fall back on boto’s way of dealing with credentials.

If you are running NYMMS on an EC2 instance the preferred way to provide access is to use an instance profile. If
that is not possible (you do not run on EC2, or you don’t understand how to setup the instance profile, etc) then the
next best way of providing the credentials is by createing an IAM user with only the permissions necessary to run
NYMMS. You would then need to get that user’s Access Key ID & Secret Key and provide them as the environment
variables AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY.

Whichever method you choose, you’ll need to provide the following permission document (for either the user, or the
role):

{
"Version": "2012-10-17",
"Statement": [
{

"Action": [
"ses:GetSendQuota",

3.3. Getting Started with NYMMS 13

http://www.virtualenv.org/en/latest/
https://aws.amazon.com/
https://github.com/boto/boto
http://docs.aws.amazon.com/IAM/latest/UserGuide/instance-profiles.html
http://aws.amazon.com/iam/

NYMMS Documentation, Release 0.2.6

"ses:SendEmail"
],
"Sid": "NymmsSESAccess",
"Resource": [

"*"
],
"Effect": "Allow"

},
{

"Action": [
"sns:ConfirmSubscription",
"sns:CreateTopic",
"sns:DeleteTopic",
"sns:GetTopicAttributes",
"sns:ListSubscriptions",
"sns:ListSubscriptionsByTopic",
"sns:ListTopics",
"sns:Publish",
"sns:SetTopicAttributes",
"sns:Subscribe",
"sns:Unsubscribe"

],
"Sid": "NymmsSNSAccess",
"Resource": [

"*"
],
"Effect": "Allow"

},
{

"Action": [
"sqs:ChangeMessageVisibility",
"sqs:CreateQueue",
"sqs:DeleteMessage",
"sqs:DeleteQueue",
"sqs:GetQueueAttributes",
"sqs:GetQueueUrl",
"sqs:ListQueues",
"sqs:ReceiveMessage",
"sqs:SendMessage",
"sqs:SetQueueAttributes"

],
"Sid": "NymmsSQSAccess",
"Resource": [

"*",
],
"Effect": "Allow"

},
{

"Action": [
"sdb:*"

],
"Sid": "NymmsSDBAccess",
"Resource": [

"*"
],
"Effect": "Allow"

}
]

14 Chapter 3. Contents

NYMMS Documentation, Release 0.2.6

}

Note: If you want to provide even tighter permissions, you can limit the SNS, SDB and SQS stanzas to specific
resources. You should provide the ARNs for each of the resources necessary.

3.3.3 Configuration

Please see the configuration page for information on how to configure NYMMS. Usually the configuration files are lo-
cated in /etc/nymms/config but that is not a requirement and all of the daemons accept the --config argument
to point them at a new config file.

3.3. Getting Started with NYMMS 15

NYMMS Documentation, Release 0.2.6

16 Chapter 3. Contents

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

17

	Demo
	Scaling
	Architecture Diagram
	The Daemons
	Communication
	Other Details

	Contents
	Configuration
	Demo AMI
	Getting Started with NYMMS

	Indices and tables

